Статьи Инфаркт миокарда

Нерешенные вопросы повышения физической активности после инфаркта миокарда

По данным Федеральной службы государственной статистики России уровень смертности от сердечно-сосудистых заболеваний (ССЗ) на протяжении последних 20 лет имел тенденцию ...

Д. Ю. Седых О. Н. Хрячкова еще 2

Изображение статьи
0
535

Предикторные сывороточные биомаркеры поражения сердечно-сосудистой системы при COVID-19

Новая коронавирусная инфекция (COVID-19), вызванная коронавирусом с тяжелым острым респираторным синдромом (SARS-CoV-2), привела к большому количеству заболевших и летальных исходов повсеместно. По состоянию на 19 марта 2021г во всем мире зарегистрировано >121 млн случаев заражения COVID-19 и 2,7 млн летальных исходов. Поэтому важно стратифицировать риск осложнений и смертности у пациентов с COVID-19. SARS-CoV-2 представляет собой одноцепочечный РНК-вирус, относящийся к родам Betacoronavirus и Sarbecovirus. Он проникает в клетки посредством связывания белка шипа вируса с рецептором ангиотензинпревращающего фермента 2 (АПФ2) [1]. АПФ2 активно экспрессируется в альвеолярных клетках легких, обеспечивая путь проникновения вируса [2]. Кроме того, АПФ2 также присутствует в миокарде, что не исключает возможность прямого влияния SARSCoV-2 на сердечно-сосудистую систему [2].

Пациенты с тяжелым течением COVID-19, поступающие в отделения интенсивной терапии (ОИТ), в основном относятся к старшим возрастным группам и имеют сопутствующие заболевания, такие как артериальная гипертензия (АГ), сахарный диабет (СД), ишемическая болезнь сердца и хроническая сердечная недостаточность (ХСН) и др. [3-5]. В метаанализе 8 клинических исследований у 46248 пациентов с COVID-19 сердечно-сосудистые заболевания (ССЗ) были третьими по частоте коморбидной патологии среди пациентов с тяжёлыми формами COVID-19. Также пациенты с COVID-19 имели высокий риск ССЗ (отношение шансов (ОШ) 3,42, 95% доверительный интервал (ДИ) 1,88-6,22) [6].

Повреждение миокарда возможно диагностировать с помощью методов визуализации (эхокардиография, магнитно-резонансная томография, однофотонная эмиссионная компьютерная томография) и электрокардиографии. В то же время наиболее информативным методом диагностики является определение кардиоспецифических сывороточных биомаркеров. Zhou F, et al. (2020) показали, что повреждение миокарда, сопровождающееся повышением уровня высокочувствительного тропонина I (вчTnI) в сыворотке крови пациентов с COVID-19, повышало риск их летального исхода более чем на 50% [3]. COVID-19 может усугубить влияние факторов на течение ССЗ и/или повысить риск их осложнений. С другой стороны, наличие повреждения миокарда предрасполагает более тяжелое течение COVID-19, что приводит, в свою очередь, к высокой летальности больных. Учитывая высокие показатели смертности во время пандемии COVID-19, очень важно выявлять пациентов с повышенным риском неблагоприятных исходов ССЗ и/или повреждений миокарда. Этого можно достичь с помощью лабораторных исследований биомаркеров, таких как вчTnI, промозговой натрийуретический пептид (NT-proBNP), D-димер и фибриноген. Все они отражают состояние сердечно-сосудистой системы и используются в настоящее время в качестве диагностических инструментов стратификации риска ССЗ [7][8]. Хотя эти биомаркеры в основном используются в диагностике ССЗ, они могут быть полезными при стратификации риска COVID-19, особенно у пациентов с сопутствующими ССЗ и/или наличием соответствующих факторов риска (ФР). Кроме того, значительный рост концентрации того или иного биомаркера во время госпитализации может свидетельствовать об отрицательной динамике состояния больного и необходимости проведения более интенсивной терапии. Кроме вышеуказанных биомаркеров, с учётом патофизиологических изменений при COVID-19, исследуются также маркеры коагуляции (фибриноген, протромбиновое время, уровень тромбоцитов), а также целый ряд “новых” биомаркеров, которые уже успешно зарекомендовали себя при ССЗ, таких как ишемическая болезнь сердца и ХСН.

Целью данного обзора является исследование биомаркеров, имеющих достаточно большую доказательную базу эффективности и перспективности кардиоваскулярных прогностических биомаркеров у пациентов с COVID-19, ассоциированных с высоким риском осложнений и смерти.

Биомаркеры, имеющие доказательную базу

Положительная полимеразно-цепная реакция против COVID-19 и наличие поражения лёгких по данным компьютерной томографии способствуют точной диагностике заболевания, однако в большинстве случаев не дают возможности определения риска тяжелого течения болезни и летального исхода. За время пандемии в проведенных исследованиях было показано, что пожилой возраст, мужской пол, наличие АГ, СД, хронической болезни почек (ХБП) и других анамнестических параметров пациентов являются ФР летального исхода. С этой точки зрения определение уровня сывороточных биомаркеров является апробированным методом стратификации риска пациентов с различными острыми и хроническими ССЗ [8][9]. Все биомаркеры при COVID-19 можно разделить на несколько групп: иммунновоспалительные (С-реактивный белок, скорость оседания эритроцитов, количество лейкоцитов, лимфоцитов, интерлейкинов (ИЛ-2, ИЛ-6, ИЛ-8, ИЛ-10), ферритина); биомаркеры повреждения (TnT/I, креатинфосфокиназа (КФК) и КФК-МВ, миоглобин, NT-proBNP); коагуляционные (фибриноген, протромбиновое время, тромбоциты), а также патофизиологически обоснованные, но не доказанные к настоящему времени биомаркеры: ангиотензин (АТ)-II, sST2 и аламандин [10]. Многие из них уже получили подтверждение в проспективных и ретроспективных исследованиях. Имеются патофизиологические обоснования возможности их использования при COVID-19, и они ожидают подтверждения своего диагностического значения в клинических исследованиях. Рассмотрим имеющиеся научные данные по каждому из вышеуказанных сердечно-сосудистых маркеров.

Tропонин I/T

ВчTnI является золотым стандартом среди биомаркеров некроза миокарда [7]. По данным Yang C и Jin Z, пациенты с COVID-19 с установленными ССЗ в анамнезе чаще имеют осложнения и поражение миокарда, что проявляется в виде повышенного уровня вчTnI в сыворотке крови [11]. Повышенный уровень тропонинов у больных с COVID-19, свидетельствующий об остром повреждении миокарда, был связан с более тяжелым течением заболевания и повышением смертности от вирусного заболевания в 4 раза [12]. В российский популяции больных с COVID-19 высокочувствительный тропонин Т (вчTnT) >25,7 мг/л также был предиктором неблагоприятного исхода [13]. Метаанализ 4-х исследований у 341 пациента с COVID-19 показал различия показателей вчTnI у тяжелых пациентов по сравнению со средне-лёгкими [14]. Shi S, et al. также установили, что у 82 из 416 (19,7%) пациентов с COVID 19 имелось повреждение миокарда, определённое по значительному повышению уровня TnI в сыворотке [4]. Среди этих пациентов регистрировался значительно более высокий уровень смертности — 51,2%, по сравнению с уровнем смертности 4,5% у пациентов с нормальным уровнем вчTnI и без повреждения миокарда [4]. По данным Guo et al., вчTnT был повышен у 52 из 187 (27,8%) пациентов, госпитализированных с COVID-19 [5]. Летальность у этих пациентов составила 59,6% по сравнению с 8,9% с нормальными значениями вчTnT [5], в то время как пациенты с COVID-19 с повышенным уровнем вчTnT и установленными ССЗ имели высокий уровень смертности (69,4%), у пациентов с повышенным уровнем вчTnT, но без ССЗ в анамнезе, наблюдался меньший уровень смертности — 37,5%. Напротив, у пациентов с нормальным уровнем вчTnT и установленными ССЗ летальность была значительно меньше по сравнению с пациентами с только повышенным уровнем вчTnT [5]. По данным Wang D, et al., у 36 из 138 (26,1%) пациентов с COVID-19, поступивших в ОИТ, были повышены уровни вчTnI в сыворотке крови (p=0,004) по сравнению с пациентами терапевтических отделений [15]. Таким образом, у тяжелых пациентов с COVID-19 уровень вчTnT при поступлении является сильным независимым предиктором тяжести заболевания и внутригоспитальной смертности.

КФК-МВ и миоглобин

Классический кардиоспецифический биомаркер — КФК-МВ, может также иметь прогностическое значение при COVID-19. Уровни КФК были значительно выше только у умерших по сравнению с выжившими (p=0,004) [16]. В исследовании Wang D, et al. у 36 из 138 (26,1%) пациентов с COVID-19, поступивших в ОИТ, были значительно повышены уровни КФК-МВ (p<0,001) по сравнению с пациентами контрольной группы [15]. Это свидетельствует о том, что пациенты с более тяжелым течением COVID-19 чаще имели острое повреждение миокарда, что отразилось в повышении уровня КФК-MB. В исследовании Zhou F, et al. была показана значимая связь между повышенным уровнем КФК-МВ с внутрибольничной смертностью (p=0,043) [3]. Wan S, et al. обнаружили, что уровень КФК был значительно выше у пациентов с COVID-19 с тяжелым течением по сравнению с легким (p=0,0016) [17]. В то же время Huang C, et al. не обнаружили существенной разницы в уровнях КФК в сыворотке между пациентами в ОИТ и в терапевтических отделениях (p=0,31) [17][18]. Увеличение миоглобина — биомаркера раннего повреждения миокарда — показало большую эффективность (AUC=0,83, 95% ДИ 0,80-0,86) в прогнозировании риска смертности от COVID-19 по сравнению с NT-proBNP (AUC=0,81, 95% ДИ 0,78-0,85), вч-TnI (AUC=0,78, 95% ДИ 0,73-0,84) и КФК-MB (AUC=0,71, 95% ДИ, 0,67-0,75) [19]. Таким образом, в большинстве исследований была показана прямая взаимосвязь между КФК-MB, миоглобином, поражением миокарда и смертностью от COVID-19.

NT-proBNP

NT-proBNP является известным биомаркером миокардиального стресса, используется как при острой и ХСН, так и при остром коронарном синдроме [9]. Кроме того, имеются данные о его повышении у пациентов с выраженными респираторными заболеваниями. В частности, у тяжелых пациентов с COVID-19 уровни NT-proBNP были выше нормальных значений [5]. Shi S, et al. сообщили о значительном повышении уровня NT-proBNP у пациентов с COVID-19 с повреждением миокарда по сравнению с пациентами без него (1689 пг/мл vs 139 пг/мл, p<0,001), и эти пациенты (с поражением миокарда) имели более высокую смертность — 51,2% [4]. У тяжелых больных степень повышения вчTnT в сыворотке коррелировала с увеличением NT-proBNP [5]. Кроме того, уровни NT-proBNP также были значительно выше у пациентов, которые умерли или выжили, но в течение определённого времени находились в критическом состоянии. Таким образом, большинство исследований свидетельствуют о высокой прогностической способности NT-proBNP при COVID-19.

D-димер

Ещё в начале пандемии было замечено, что аномальные параметры свертывания крови у пациентов с COVID-19 связаны с худшим прогнозом заболевания. Однако не совсем ясно, можно ли использовать параметры коагуляции для стратификации риска смерти пациентов при поступлении в стационар. Основной механизм коагулопатии у пациентов с COVID-19 окончательно не установлен, но предполагается, что гипервоспаление приводит к дисфункции эндотелия и к переходу системы гемостаза в протромботическое состояние [20]. Развивающийся васкулит приводит не только к поражению артерий и вен, но также всей системы микроциркуляции. Последствия такого эндотелиита могут включать полиорганную недостаточность, генерализованный вазоспазм, аномальный ангиогенез, образование микротромбов и ишемию [20]. У пациентов с тяжелой формой COVID-19 развивается состояние гиперкоагуляции [21], что отражается в повышении уровня фактора VIII и Виллебранда, незначительном снижении активности антитромбина III [22] и инактивации фибринолитической системы [23]. 71% пациентов, умерших от COVID-19, соответствовали критериям синдрома диссеминированного внутрисосудистого свертывания (ДВС) по сравнению с 0,6% — у выживших [24]. В настоящее время D-димер — один из главных маркеров тромбоза — продемонстрировал прогностическую ценность у пациентов с COVID-19. В частности, повышенный уровень D-димера в 36- 43% встречался у пациентов, перенесших COVID-19 [14][24], и у этих пациентов чаще определялись значимые осложнения и смертельные исходы. В ретроспективном одноцентровом исследовании Wang D, et al. у 138 пациентов с COVID-19 при поступлении уровень D-димера был значительно повышен: у тяжелых по сравнению с пациентами со средней степени тяжести [15]. В ретроспективном когортном исследовании было показано, что в ОИТ у пациентов уровни D-димера в 4 раза превышали значения у пациентов в терапевтических отделениях — p=0,0042 [18]. В многоцентровом ретроспективном когортном исследовании у 191 пациента было продемонстрировано, что при мультивариантном анализе с учётом других ФР повышенный уровень D-димеров при поступлении в стационар коррелировал с риском смерти (p=0,003) [3]. Более того, уровень сывороточного D-димера у 81% умерших при поступлении в стационар превышал 1 мкг/мл по сравнению с 24% у выживших [3]. Повышенный уровень данного биомаркера был тесно связан с острым повреждением миокарда, диагностированным с помощью повышенного вчTnI, и коррелировал с повышенным риском летальности [5]. Значительная разница в уровне D-димера наблюдалась у умерших и больных в критическом состоянии по сравнению с более лёгкими пациентами [16]. Аналогично в исследовании Wan S, et al. (2020) при поступлении повышенный уровень данного биомаркера был связан с тяжелым течением заболевания, а в средне-лёгких случаях — оставался в пределах нормы [17]. Таким образом, уровень D-димера имеет прогностическую ценность в отношении смертности от COVID-19 и может использоваться для выявления пациентов с отрицательной динамикой заболевания.

Протромбиновое время

Протромбиновое время (ПВ) также может иметь определённое прогностическое значение у пациентов с COVID-19. В ретроспективном когортном исследование было показано, что пациенты, госпитализированные в ОИТ, по сравнению с терапевтическими отделениями имели увеличенное ПВ [15][18]. В частности, по данным Wang D, et al., у 58% пациентов с COVID-19 выявили удлинённое ПВ [15]. Как и D-димер, повышенное ПВ также было связано с острым миокардиальным повреждением [5]. В некоторых крупномасштабных исследованиях было показано, что ПВ коррелирует с тяжестью заболевания, в частности, в ретроспективном исследовании у 296 пациентов, у умерших от COVID-19 имелись более высокие значения ПВ, чем в группе выживших [25]. В крупном многоцентровом ретроспективном исследовании было показало, что ПВ >16 сек в значительной степени ассоциировалось с летальностью в стационаре (ОШ 4,62, p=0,019) [3], а в исследовании Tang N, et al. — ПВ было значительно увеличено у умерших (p<0,001) [24]. Tang N, et al. также продемонстрировали, что с момента поступления в стационар ПВ прогрессивно увеличивалось у умерших [24]. В ретроспективном многоцентровом когортном исследовании на 191 пациенте с COVID-19 ФР смерти были высокие уровни ПВ, вчTnI, КФК и D-димера [3].

Тромбоциты

Кровоизлияния, индуцированные снижением тромбоцитов в крови, часто наблюдаются у пациентов с тяжелым течением COVID-19 [26], и у них заболевание протекает более злокачественно. В то же время разница в концентрации тромбоцитов между пациентами, поступившими в ОИТ и в терапевтические отделения, отсутствовала [15][18]. Снижение количества тромбоцитов корригировало с госпитальной смертью и повреждением миокарда. В частности, Zhou F, et al. сообщили о гораздо более низком количестве тромбоцитов у умерших (p<0,001), при этом у 20% умерших количество тромбоцитов было <100×109/л по сравнению с 1% — у выживших [3]. Также пациенты с повышенным вчTnI при поступлении в стационар имели значительно более низкое количество тромбоцитов по сравнению с больными без повреждения миокарда (p<0,001).

Фибриноген

В исследовании на 183 пациента было показало, что уровень фибриногена при поступлении в стационар был значительно повышен у умерших пациентов (p<0,001) [24]. В то время, как уровни фибриногена не показывали значимую разницу при поступлении в стационар, при этом они были значительно ниже у выживших, чем у умерших [24]. Эти данные подтверждают роль аномальной коагуляции при ухудшении состояния пациентов с COVID-19, и факт того, что некоторые показатели коагуляции могут иметь прогностическое значение в отношении смертности от COVID-19.

Перспективные биомаркеры

Растворимая изоформа — sST2

Многочисленные исследования позволили установить зависимость между наличием сопутствующих ССЗ и тяжелым течением COVID-19. Наличие ХСН является независимым предиктором смертности. Биомаркер растворимая изоформа ST2 (sST2) стал одним из наиболее многообещающих биомаркеров в оценке развития и прогноза пациентов с ХСН. Его трансмембранная изоформа оказывает кардиопротекторное действие, в то время как sST2, обнаруживаемая в сыворотке крови, связана с фиброзом миокарда и неблагоприятным исходом у пациентов с ХСН [9]. sST2 является членом семейства рецепторов ИЛ-1 и, по-видимому, участвует не только в реакции сердечно-сосудистой системы на повреждение, но и процессе ремоделирования миокарда при ХСН и инфаркте миокарда [27]. Также недавние исследования предполагают потенциальную роль sST2 как маркера воспаления, в то время как другие исследования определяют его как потенциальный прогностический маркер у пациентов с COVID-19, в частности, Miftode RS, et al. предлагают использовать sST2 для прогнозирования неблагоприятных исходов у больных с COVID-19 [28].

Ангиотензин II и аламандин

Вирус SARS-CoV-2 использует рецептор АПФ2 для проникновения в клетки-мишени, которые находятся в эндотелии легких, сердца и других органов [29]. Ангиотензинпревращающий фермент конвертирует АТ-I в АТ-II, который, в свою очередь, активирует рецепторы АТ-II первого типа [30]. АТ-II обладает мощным вазоспастическим эффектом, а также приводит к выбросу провоспалительных цитокинов, таких как ИЛ-6, а также других прооксидантных эффекторов, имеющих значение в патогенезе COVID-19 [31]. Уровень АПФ2 также был значительно повышен у пациентов с птичьим гриппом и показал прогностическую способность в отношении летальности при этом заболевании [32]. Также определена сильная корреляция между концентрацией ИЛ-6 и степенью эндотелиальной дисфункции, опосредованной через АТ-II [33]. АПФ2 преобразует АТ-II в АТ-(1-7) и АТ-I — в АТ-(1-9). АТ-(1-7) и АТ- (1-9) вызывают соответствующие эффекты через рецепторы Mas и AT2R, соответственно. АТ-(1-7) вызывает региональное и системное расширение сосудов, диурез и натрийурез. АТ-(1-9) увеличивает биодоступность оксида азота, стимулируя высвобождение брадикинина [34]. Активация этих путей опосредует противовоспалительные и антифиброзные эффекты, приводящие к кардио-, респиро- и нефропротекции [35]. Аламандин образуется в результате катализа АПФ2 в АТ или декарбоксилирования АТ- (1-7). Он оказывает те же эффекты, что и АТ-(1-7), такие как дилатация сосудов и антифибротический эффект [36]. Аламандин модулирует регуляцию периферического и центрального артериального давления и осуществляет ремоделирование сердечнососудистой системы [37]. Было показано, что уровни АТ-II в плазме были повышены у пациентов с COVID-19 по сравнению со здоровыми людьми [38]. Концентрация АТ-II у пациентов с COVID-19 коррелировала с тяжестью состояния и степенью поражения легких [38], что позволяет предположить, что АТ-II может быть медиатором заболевания, приводящим к вазоспазму и воспалительному и/или оксидативному повреждению органов. Предполагается, что АТ-II можно использовать в качестве биомаркера для стратификации риска пациентов, и при этом больные с более высоким содержанием АТ-II будут иметь повышенный риск тяжелого течения заболевания и смертности.

Гомоцистеин

С момента открытия гомоцистеина в 1932г он является предметом множества научных споров. Высокие уровни гомоцистеина в плазме крови значительно увеличивают частоту повреждения как мелких, так и крупных сосудов [39]. Его высокая концентрация связана с увеличением риска дегенеративных и атеросклеротических процессов в сосудах [40]. Некоторые наблюдения связывают гипергомоцистеинемию с ССЗ, СД, ХБП и жировым гепатозом [41]. Хотя гомоцистеин является эффективным биомаркером кардиоваскулярного риска, а сердечно-сосудистые осложнения являются критическими у госпитализированных пациентов с COVID-19, то возможно он будет интересен в плане прогноза течения и исходов данного заболевания. По данным Yang Z, et al. (2020), была продемонстрирована прогностическая ценность гомоцистеина при тяжелой пневмонии в первую неделю у пациентов с COVID-19 [42].

Обсуждение

У пациентов с COVID-19 часто определяется повреждение сердца, гемодинамическая нестабильность и полиорганная недостаточность [43]. Биомаркеры острого повреждения миокарда имеют высокий потенциал при прогнозировании исходов заболевания у пациентов с COVID-19, при наличии повреждения миокарда и даже без него. До сих пор не определён “идеальный” биомаркер тяжести состояния больных с COVID-19 такой, например, как вчTnI при остром коронарном синдроме или креатинин при ХБП. Выделены иммуно-воспалительные и кардиальные биомаркеры повреждения. К кардиальным биомаркерам прежде всего относится вчTnI/T. В ретроспективных исследованиях и метаанализах было показано, что концентрации вчTn, NT-proBNP и КФК МВ были значительно выше у пациентов с тяжелыми формами COVID-19 [12][13][43]. Ввиду наличия достаточной доказательной базы данных, очевидно, что на сегодняшний день вчTnI является оптимальным биомаркером миокардиального повреждения по сравнению с КФК-MB, миоглобином и NT-proBNP вследствие его высокой чувствительности при оценке динамики состояния и повреждения миокарда. В то же время NT-proBNP и КФК-MB продемонстрировали определённую прогностическую ценность в отношении тяжелого течения заболевания и исходов COVID-19. Очевидно, что они связаны с повреждением миокарда, которое определяется по увеличению уровня вчTnI/T. Исследования продемонстрировали значительную разницу в уровнях вчTnI в сыворотке крови между выжившими и умершими от COVID-19 пациентами. Повышенные уровни вчTnT/I в сыворотке коррелируют со степенью тяжести больных и повышенной смертностью у пациентов с наличием и даже отсутствием сердечно-сосудистых ФР. Высокие уровни вчTnT/I в сыворотке крови при поступлении в качестве рутинной процедуры могут иметь значение для профилактики смертности у пациентов с тяжелым COVID-19.

Terpos E, et al. показали, что гиперкоагуляция часто встречается среди госпитализированных пациентов с COVID-19. Некоторые параметры коагуляции и гематологической панели, включая снижение числа тромбоцитов, демонстрируют отрицательную прогностическую значимость в отношении риска смерти [44]. Нарушения коагуляции, которые проявляются в виде роста параметров ПВ, фибриногена и D-димера, наряду с значительной тромбоцитопенией, связаны с развитием ДВС-синдрома. В крупных исследованиях было показано, что повышение D-димера и ПВ связаны с тяжелым течением заболевания и высокой смертностью [3][32]. Активация процессов свертывания крови достигает своего пика при ДВС-синдроме, который имеет место при критических состояниях пациентов с COVID-19. Циркуляция свободного тромбина, неконтролируемая естественными антикоагулянтами, может активировать тромбоциты и стимулировать фибринолиз. На поздних стадиях ДВС уровни маркеров, связанных с фибрином (D-димер и фибриноген), заметно повышены при смертельном исходе, что указывает на общую активацию коагуляции и гиперфибринолиз. Продолжающаяся активация коагуляции на протяжении лечения в стационаре больных, о чём свидетельствует повышение уровня D-димера, ПВ и фибриногена, может помочь выявить отрицательную динамику пациентов, которым требуется более интенсивная терапия. D-димер продемонстрировал прогностическую ценность как при лечении в ОИТ, так и стратификации риска внутригоспитальной смерти больных при поступлении в стационар. ПВ и тромбоциты также показали возможность прогнозирования летальности от COVID-19.

Помимо вышеуказанных биомаркеров, в настоящее время исследуются несколько биомаркеров, которые имеют определённое патофизиологическое обоснование и показали свою значимость при ССЗ. В частности, учитывая взаимодействие вируса SARSCoV-2 с рецепторами АТ-II, концентрация данного маркера в сыворотке, а также аламантадина теоретически могут прогнозировать тяжесть течения болезни. Также известные сердечно-сосудистые биомаркеры — гомоцистеин и sST2, могут найти свою нишу при оценке тяжести и стратификации риска тяжести болезни и/или летальности.

Следует подчеркнуть необходимость проведения крупных многоцентровых исследований для оценки прогностической значимости биомаркеров. Возможно, комбинация вышеуказанных или других биомаркеров и мультимаркерная шкала могут иметь лучший предикторный эффект по аналогии с острым коронарным синдромом, ХСН и другими ССЗ.